Copied to
clipboard

G = C522C12order 300 = 22·3·52

The semidirect product of C52 and C12 acting via C12/C2=C6

metabelian, soluble, monomial, A-group

Aliases: C522C12, (C5×C10).C6, C526C4⋊C3, C52⋊C34C4, C2.(C52⋊C6), (C2×C52⋊C3).2C2, SmallGroup(300,14)

Series: Derived Chief Lower central Upper central

C1C52 — C522C12
C1C52C5×C10C2×C52⋊C3 — C522C12
C52 — C522C12
C1C2

Generators and relations for C522C12
 G = < a,b,c | a5=b5=c12=1, ab=ba, cac-1=a-1b2, cbc-1=ab2 >

25C3
3C5
3C5
25C4
25C6
3C10
3C10
25C12
15Dic5
15Dic5

Character table of C522C12

 class 123A3B4A4B5A5B5C5D6A6B10A10B10C10D12A12B12C12D
 size 112525252566662525666625252525
ρ111111111111111111111    trivial
ρ21111-1-11111111111-1-1-1-1    linear of order 2
ρ311ζ3ζ32111111ζ32ζ31111ζ3ζ3ζ32ζ32    linear of order 3
ρ411ζ32ζ3111111ζ3ζ321111ζ32ζ32ζ3ζ3    linear of order 3
ρ511ζ3ζ32-1-11111ζ32ζ31111ζ65ζ65ζ6ζ6    linear of order 6
ρ611ζ32ζ3-1-11111ζ3ζ321111ζ6ζ6ζ65ζ65    linear of order 6
ρ71-111i-i1111-1-1-1-1-1-1-ii-ii    linear of order 4
ρ81-111-ii1111-1-1-1-1-1-1i-ii-i    linear of order 4
ρ91-1ζ32ζ3-ii1111ζ65ζ6-1-1-1-1ζ4ζ32ζ43ζ32ζ4ζ3ζ43ζ3    linear of order 12
ρ101-1ζ3ζ32-ii1111ζ6ζ65-1-1-1-1ζ4ζ3ζ43ζ3ζ4ζ32ζ43ζ32    linear of order 12
ρ111-1ζ32ζ3i-i1111ζ65ζ6-1-1-1-1ζ43ζ32ζ4ζ32ζ43ζ3ζ4ζ3    linear of order 12
ρ121-1ζ3ζ32i-i1111ζ6ζ65-1-1-1-1ζ43ζ3ζ4ζ3ζ43ζ32ζ4ζ32    linear of order 12
ρ13660000-3-5/2-3+5/21-51+5001-51+5-3+5/2-3-5/20000    orthogonal lifted from C52⋊C6
ρ146600001-51+5-3+5/2-3-5/200-3+5/2-3-5/21+51-50000    orthogonal lifted from C52⋊C6
ρ156600001+51-5-3-5/2-3+5/200-3-5/2-3+5/21-51+50000    orthogonal lifted from C52⋊C6
ρ16660000-3+5/2-3-5/21+51-5001+51-5-3-5/2-3+5/20000    orthogonal lifted from C52⋊C6
ρ176-60000-3-5/2-3+5/21-51+500-1+5-1-53-5/23+5/20000    symplectic faithful, Schur index 2
ρ186-600001-51+5-3+5/2-3-5/2003-5/23+5/2-1-5-1+50000    symplectic faithful, Schur index 2
ρ196-60000-3+5/2-3-5/21+51-500-1-5-1+53+5/23-5/20000    symplectic faithful, Schur index 2
ρ206-600001+51-5-3-5/2-3+5/2003+5/23-5/2-1+5-1-50000    symplectic faithful, Schur index 2

Smallest permutation representation of C522C12
On 60 points
Generators in S60
(2 36 58 45 13)(3 25 59 46 14)(5 16 48 49 27)(6 17 37 50 28)(8 30 52 39 19)(9 31 53 40 20)(11 22 42 55 33)(12 23 43 56 34)
(1 44 35 24 57)(2 36 58 45 13)(3 46 25 14 59)(4 60 15 26 47)(5 16 48 49 27)(6 50 17 28 37)(7 38 29 18 51)(8 30 52 39 19)(9 40 31 20 53)(10 54 21 32 41)(11 22 42 55 33)(12 56 23 34 43)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)

G:=sub<Sym(60)| (2,36,58,45,13)(3,25,59,46,14)(5,16,48,49,27)(6,17,37,50,28)(8,30,52,39,19)(9,31,53,40,20)(11,22,42,55,33)(12,23,43,56,34), (1,44,35,24,57)(2,36,58,45,13)(3,46,25,14,59)(4,60,15,26,47)(5,16,48,49,27)(6,50,17,28,37)(7,38,29,18,51)(8,30,52,39,19)(9,40,31,20,53)(10,54,21,32,41)(11,22,42,55,33)(12,56,23,34,43), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)>;

G:=Group( (2,36,58,45,13)(3,25,59,46,14)(5,16,48,49,27)(6,17,37,50,28)(8,30,52,39,19)(9,31,53,40,20)(11,22,42,55,33)(12,23,43,56,34), (1,44,35,24,57)(2,36,58,45,13)(3,46,25,14,59)(4,60,15,26,47)(5,16,48,49,27)(6,50,17,28,37)(7,38,29,18,51)(8,30,52,39,19)(9,40,31,20,53)(10,54,21,32,41)(11,22,42,55,33)(12,56,23,34,43), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60) );

G=PermutationGroup([[(2,36,58,45,13),(3,25,59,46,14),(5,16,48,49,27),(6,17,37,50,28),(8,30,52,39,19),(9,31,53,40,20),(11,22,42,55,33),(12,23,43,56,34)], [(1,44,35,24,57),(2,36,58,45,13),(3,46,25,14,59),(4,60,15,26,47),(5,16,48,49,27),(6,50,17,28,37),(7,38,29,18,51),(8,30,52,39,19),(9,40,31,20,53),(10,54,21,32,41),(11,22,42,55,33),(12,56,23,34,43)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60)]])

Matrix representation of C522C12 in GL7(𝔽61)

1000000
0100000
0010000
000601700
000444400
000004444
000001760
,
1000000
0010000
060170000
0000100
000601700
000004444
000001760
,
50000000
00084100
000555300
00000841
000005553
08410000
055530000

G:=sub<GL(7,GF(61))| [1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,60,44,0,0,0,0,0,17,44,0,0,0,0,0,0,0,44,17,0,0,0,0,0,44,60],[1,0,0,0,0,0,0,0,0,60,0,0,0,0,0,1,17,0,0,0,0,0,0,0,0,60,0,0,0,0,0,1,17,0,0,0,0,0,0,0,44,17,0,0,0,0,0,44,60],[50,0,0,0,0,0,0,0,0,0,0,0,8,55,0,0,0,0,0,41,53,0,8,55,0,0,0,0,0,41,53,0,0,0,0,0,0,0,8,55,0,0,0,0,0,41,53,0,0] >;

C522C12 in GAP, Magma, Sage, TeX

C_5^2\rtimes_2C_{12}
% in TeX

G:=Group("C5^2:2C12");
// GroupNames label

G:=SmallGroup(300,14);
// by ID

G=gap.SmallGroup(300,14);
# by ID

G:=PCGroup([5,-2,-3,-2,-5,5,30,963,1568,6004,909]);
// Polycyclic

G:=Group<a,b,c|a^5=b^5=c^12=1,a*b=b*a,c*a*c^-1=a^-1*b^2,c*b*c^-1=a*b^2>;
// generators/relations

Export

Subgroup lattice of C522C12 in TeX
Character table of C522C12 in TeX

׿
×
𝔽