metabelian, soluble, monomial, A-group
Aliases: C52⋊2C12, (C5×C10).C6, C52⋊6C4⋊C3, C52⋊C3⋊4C4, C2.(C52⋊C6), (C2×C52⋊C3).2C2, SmallGroup(300,14)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C52 — C5×C10 — C2×C52⋊C3 — C52⋊2C12 |
C52 — C52⋊2C12 |
Generators and relations for C52⋊2C12
G = < a,b,c | a5=b5=c12=1, ab=ba, cac-1=a-1b2, cbc-1=ab2 >
Character table of C52⋊2C12
class | 1 | 2 | 3A | 3B | 4A | 4B | 5A | 5B | 5C | 5D | 6A | 6B | 10A | 10B | 10C | 10D | 12A | 12B | 12C | 12D | |
size | 1 | 1 | 25 | 25 | 25 | 25 | 6 | 6 | 6 | 6 | 25 | 25 | 6 | 6 | 6 | 6 | 25 | 25 | 25 | 25 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 3 |
ρ4 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 3 |
ρ5 | 1 | 1 | ζ3 | ζ32 | -1 | -1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | ζ65 | ζ65 | ζ6 | ζ6 | linear of order 6 |
ρ6 | 1 | 1 | ζ32 | ζ3 | -1 | -1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | ζ6 | ζ6 | ζ65 | ζ65 | linear of order 6 |
ρ7 | 1 | -1 | 1 | 1 | i | -i | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -i | i | -i | i | linear of order 4 |
ρ8 | 1 | -1 | 1 | 1 | -i | i | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | i | -i | i | -i | linear of order 4 |
ρ9 | 1 | -1 | ζ32 | ζ3 | -i | i | 1 | 1 | 1 | 1 | ζ65 | ζ6 | -1 | -1 | -1 | -1 | ζ4ζ32 | ζ43ζ32 | ζ4ζ3 | ζ43ζ3 | linear of order 12 |
ρ10 | 1 | -1 | ζ3 | ζ32 | -i | i | 1 | 1 | 1 | 1 | ζ6 | ζ65 | -1 | -1 | -1 | -1 | ζ4ζ3 | ζ43ζ3 | ζ4ζ32 | ζ43ζ32 | linear of order 12 |
ρ11 | 1 | -1 | ζ32 | ζ3 | i | -i | 1 | 1 | 1 | 1 | ζ65 | ζ6 | -1 | -1 | -1 | -1 | ζ43ζ32 | ζ4ζ32 | ζ43ζ3 | ζ4ζ3 | linear of order 12 |
ρ12 | 1 | -1 | ζ3 | ζ32 | i | -i | 1 | 1 | 1 | 1 | ζ6 | ζ65 | -1 | -1 | -1 | -1 | ζ43ζ3 | ζ4ζ3 | ζ43ζ32 | ζ4ζ32 | linear of order 12 |
ρ13 | 6 | 6 | 0 | 0 | 0 | 0 | -3-√5/2 | -3+√5/2 | 1-√5 | 1+√5 | 0 | 0 | 1-√5 | 1+√5 | -3+√5/2 | -3-√5/2 | 0 | 0 | 0 | 0 | orthogonal lifted from C52⋊C6 |
ρ14 | 6 | 6 | 0 | 0 | 0 | 0 | 1-√5 | 1+√5 | -3+√5/2 | -3-√5/2 | 0 | 0 | -3+√5/2 | -3-√5/2 | 1+√5 | 1-√5 | 0 | 0 | 0 | 0 | orthogonal lifted from C52⋊C6 |
ρ15 | 6 | 6 | 0 | 0 | 0 | 0 | 1+√5 | 1-√5 | -3-√5/2 | -3+√5/2 | 0 | 0 | -3-√5/2 | -3+√5/2 | 1-√5 | 1+√5 | 0 | 0 | 0 | 0 | orthogonal lifted from C52⋊C6 |
ρ16 | 6 | 6 | 0 | 0 | 0 | 0 | -3+√5/2 | -3-√5/2 | 1+√5 | 1-√5 | 0 | 0 | 1+√5 | 1-√5 | -3-√5/2 | -3+√5/2 | 0 | 0 | 0 | 0 | orthogonal lifted from C52⋊C6 |
ρ17 | 6 | -6 | 0 | 0 | 0 | 0 | -3-√5/2 | -3+√5/2 | 1-√5 | 1+√5 | 0 | 0 | -1+√5 | -1-√5 | 3-√5/2 | 3+√5/2 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ18 | 6 | -6 | 0 | 0 | 0 | 0 | 1-√5 | 1+√5 | -3+√5/2 | -3-√5/2 | 0 | 0 | 3-√5/2 | 3+√5/2 | -1-√5 | -1+√5 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ19 | 6 | -6 | 0 | 0 | 0 | 0 | -3+√5/2 | -3-√5/2 | 1+√5 | 1-√5 | 0 | 0 | -1-√5 | -1+√5 | 3+√5/2 | 3-√5/2 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ20 | 6 | -6 | 0 | 0 | 0 | 0 | 1+√5 | 1-√5 | -3-√5/2 | -3+√5/2 | 0 | 0 | 3+√5/2 | 3-√5/2 | -1+√5 | -1-√5 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(2 36 58 45 13)(3 25 59 46 14)(5 16 48 49 27)(6 17 37 50 28)(8 30 52 39 19)(9 31 53 40 20)(11 22 42 55 33)(12 23 43 56 34)
(1 44 35 24 57)(2 36 58 45 13)(3 46 25 14 59)(4 60 15 26 47)(5 16 48 49 27)(6 50 17 28 37)(7 38 29 18 51)(8 30 52 39 19)(9 40 31 20 53)(10 54 21 32 41)(11 22 42 55 33)(12 56 23 34 43)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)
G:=sub<Sym(60)| (2,36,58,45,13)(3,25,59,46,14)(5,16,48,49,27)(6,17,37,50,28)(8,30,52,39,19)(9,31,53,40,20)(11,22,42,55,33)(12,23,43,56,34), (1,44,35,24,57)(2,36,58,45,13)(3,46,25,14,59)(4,60,15,26,47)(5,16,48,49,27)(6,50,17,28,37)(7,38,29,18,51)(8,30,52,39,19)(9,40,31,20,53)(10,54,21,32,41)(11,22,42,55,33)(12,56,23,34,43), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)>;
G:=Group( (2,36,58,45,13)(3,25,59,46,14)(5,16,48,49,27)(6,17,37,50,28)(8,30,52,39,19)(9,31,53,40,20)(11,22,42,55,33)(12,23,43,56,34), (1,44,35,24,57)(2,36,58,45,13)(3,46,25,14,59)(4,60,15,26,47)(5,16,48,49,27)(6,50,17,28,37)(7,38,29,18,51)(8,30,52,39,19)(9,40,31,20,53)(10,54,21,32,41)(11,22,42,55,33)(12,56,23,34,43), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60) );
G=PermutationGroup([[(2,36,58,45,13),(3,25,59,46,14),(5,16,48,49,27),(6,17,37,50,28),(8,30,52,39,19),(9,31,53,40,20),(11,22,42,55,33),(12,23,43,56,34)], [(1,44,35,24,57),(2,36,58,45,13),(3,46,25,14,59),(4,60,15,26,47),(5,16,48,49,27),(6,50,17,28,37),(7,38,29,18,51),(8,30,52,39,19),(9,40,31,20,53),(10,54,21,32,41),(11,22,42,55,33),(12,56,23,34,43)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60)]])
Matrix representation of C52⋊2C12 ►in GL7(𝔽61)
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 60 | 17 | 0 | 0 |
0 | 0 | 0 | 44 | 44 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 44 | 44 |
0 | 0 | 0 | 0 | 0 | 17 | 60 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 60 | 17 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 60 | 17 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 44 | 44 |
0 | 0 | 0 | 0 | 0 | 17 | 60 |
50 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 8 | 41 | 0 | 0 |
0 | 0 | 0 | 55 | 53 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 8 | 41 |
0 | 0 | 0 | 0 | 0 | 55 | 53 |
0 | 8 | 41 | 0 | 0 | 0 | 0 |
0 | 55 | 53 | 0 | 0 | 0 | 0 |
G:=sub<GL(7,GF(61))| [1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,60,44,0,0,0,0,0,17,44,0,0,0,0,0,0,0,44,17,0,0,0,0,0,44,60],[1,0,0,0,0,0,0,0,0,60,0,0,0,0,0,1,17,0,0,0,0,0,0,0,0,60,0,0,0,0,0,1,17,0,0,0,0,0,0,0,44,17,0,0,0,0,0,44,60],[50,0,0,0,0,0,0,0,0,0,0,0,8,55,0,0,0,0,0,41,53,0,8,55,0,0,0,0,0,41,53,0,0,0,0,0,0,0,8,55,0,0,0,0,0,41,53,0,0] >;
C52⋊2C12 in GAP, Magma, Sage, TeX
C_5^2\rtimes_2C_{12}
% in TeX
G:=Group("C5^2:2C12");
// GroupNames label
G:=SmallGroup(300,14);
// by ID
G=gap.SmallGroup(300,14);
# by ID
G:=PCGroup([5,-2,-3,-2,-5,5,30,963,1568,6004,909]);
// Polycyclic
G:=Group<a,b,c|a^5=b^5=c^12=1,a*b=b*a,c*a*c^-1=a^-1*b^2,c*b*c^-1=a*b^2>;
// generators/relations
Export
Subgroup lattice of C52⋊2C12 in TeX
Character table of C52⋊2C12 in TeX